G. Berikelashvili and M. Mirianashvili ON A THREE LEVEL DIFFERENCE SCHEME FOR THE REGULARIZED LONG WAVE EQUATION
نویسنده
چکیده
We consider an initial boundary-value problem for the Regularized Long Wave equation. A three level conservative difference scheme is studied. On the first level a two level scheme is used to find the values of the unknown functions which ensures the expression of the initial energies only by the initial data. The obtained algebraic equations are linear with respect to the values of the unknown function for each new level. The use of the Gronwall lemma does not require any restriction on mesh steps. It is proved that the finite difference scheme converges with the rate O(τ 2 +h) when the exact solution belongs to the Sobolev space W 3 2 . ! " # $ % " $ " % $ # % % " # & # ! " ! O(τ + h) ' " ! W 3 2 # 2000 Mathematics Subject Classification: 65M06, 35L70.
منابع مشابه
On the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملOptimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method
In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...
متن کاملA New Conservative Finite Difference Method for the Nonlinear Regularized Long Wave Equation
In this paper, a finite difference method for initial-boundary value problem of nonlinear Regularized-Long-Wave equation was considered. A energy conservative finite difference scheme of three levels was proposed, convergence and stability of difference solution was proved, if picking suitably,the accuracy of the new scheme is higher than others, so the method is efficient and reliable.
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009